Produkt-News

Compar AG
Deep Learning bei der optischen Qualitätskontrolle von z.B. Lötverbindungen

Bei Lötverbindungen auf Leiterplatten bedingt der gesetzlich vorgeschriebene Wechsel zu bleifreien Loten erhöhte Ausfallraten. Daher muss die Qualitätskontrolle verbessert werden. Zum Einsatz kommen dabei Systeme für die kameragestützte automatische Bildauswertung. Die bisher üblichen Verfahren stossen allerdings noch an Grenzen. Bei der Festlegung der Prüfkriterien muss der Anwender einen schmalen Grat zwischen zu hohen internen oder zu hohen externen Fehlerraten beschreiten. Eine jetzt bei Siemens Smart Infrastructure installierte Lösung bindet deshalb eine auf „Künstlicher Intelligenz“ (KI) basierende Deep-Learning-Lösung ein, was deutliche Verbesserungen ermöglichte.

Compar AG - Lötkontrolle Deep Learning Bild 1
Beim Vidi Supervised Learning“ macht der Trainer den Fehler durch eine Farbmarkierung kenntlich
.

„Unser Kunde Siemens Smart Infrastructure stellt auf automatischen Anlagen Rauchmelder für den Brandschutz in zahlreichen Varianten und in mittleren bis grossen Stückzahlen her“, weiss BSc FHO Lukas Vassalli, Entwickler bei Fa. Compar AG in Pfäffikon (Schweiz). Die verwendeten Bauteile werden mithilfe von Bestückungsautomaten auf die Platine gesetzt und anschliessend von oben verlötet. Das EU-weite Verbot bleihaltiger Lotlegierungen zwingt die Hersteller zur Verwendung bleifreier Lote, die jedoch schlechtere Löteigenschaften haben. Die Folge sind erhöhte Ausschuss- und Ausfallraten. Umso wichtiger sind zuverlässige automatische Qualitätskontrollsysteme. Meist handelt es sich um kameragestützte Bildverarbeitungs-Lösungen, die mithilfe geeigneter Softwarepakete aufgrund von Bildanalysen In-Ordnung/Nicht-In-Ordnung-(IO/NIO)-Einteilungen vornehmen. Ihre Trennschärfe stellte bisher jedoch nicht immer zufrieden. Vor allem beim Einsatz für kritische Sicherheitsfunktionen müssen die Prüfkriterien zur „sicheren“ Seite hin getrimmt werden, da Brandmelder höchste Zuverlässigkeit aufweisen müssen. Dies bedingt jedoch erhöhte Ausschussraten mit entsprechenden Kostennachteilen. Um diese zu verringern, habe man sich bei Compar zum Ziel gesetzt, bei der Bildanalyse zusätzlich Lösungen mit „Künstlicher Intelligenz“ in Form selbstlernender neuronaler Netze einzusetzen. Zudem ging es darum, solche Aufgaben in übergeordnete IT-Strukturen im Rahmen von „Industrie 4.0“-Konzepten einzubinden.

Compar AG - Lötkontrolle Deep Learning Bild 2
Unauffällige Lebensretter: Rauchmelder sind Sicherheitsteile

KI-Einbindung
„Der Bildverarbeitungs-Spezialist Cognex hat für solche Aufgabenstellungen unter der Bezeichnung ViDi fertige Softwarepakete in Form von Plug-In-Modulen entwickelt“, ergänzt L. Vassalli. Als hardwareseitige Voraussetzung sollte zumindest in der Trainingsphase ein leistungsfähiger Bildprozessor (Graphics Processing Unit, GPU) auf dem eingesetzten Rechner vorhanden sein. Wesentliche Komponente der Software Bibliothek ist ein neuronales Netz, das bereits teilweise vorstrukturiert ist, so dass der Anwender schnell und einfach mit dem Einlernen beginnen kann. Dies ist vor dem ersten Einsatz erforderlich und erfolgt, indem dem Netz eine gewisse Zahl von Bildern als „Trainingsmaterial“ vorgegeben wird. Anschliessend kann es neue Bilder selbständig nach den gewünschten Kriterien beurteilen. Der beim Training entstandene Wissensschatz wird im Laufe des Einsatzes ständig erweitert und verfeinert, weshalb auch der Begriff „Deep Learning“ geprägt wurde. Bei der hier beschriebenen Anwendung geht es neben der Beurteilung von Lötverbindungen auch um das Auffinden von Bestückungsfehlern.

Compar AG - Lötkontrolle Deep Learning Bild 3
Das Foto aufgesplittet in ein Gut- und Schlechtteilmuster, welches oben im Bild mit einer 0.99 Fehlersicherheit (99 % NIO) den Fehler erkennt und unten eine 0,02 Fehlersicherheit (2 % NIO sprich 98 % IO) aufweist und als „gut“ bewertet wurde

Gesamtsystem
„Das Gesamtsystem besteht aus der Kamera und einer für die Anwendung ausgelegten Beleuchtung, welche die Platinen aufnimmt, sowie einem Industrie-PC mit dem Visionexpert-Programm“, sagt L. Vassalli. Ergänzt wird es durch das ViDi-Paket, das als „Black-Box“ arbeitet. Es analysiert die übergebenen Bilder mithilfe seines neuronalen Netzes und liefert entsprechende Beurteilungen zurück. Dies erfolgt verzögerungsfrei innerhalb von Millisekunden im Takt der Produktionslinie. Vor dem Start wurde das System von Compar mithilfe von Bildern zur Verfügung gestellter Musterteile vorkonfiguriert. Im laufenden Einsatz kann das System vom Anwender selbst je nach Bedarf mit neuen Produkten trainiert oder mit Varianten bereits vorhandener Produkte nachtrainiert werden. Für solche Trainingsphasen sind dank der hohen Rechnerleistung lediglich wenige Minuten erforderlich. Beim Training kann man das System entweder direkt mit Fotos „füttern“ oder im Supervisor-Modus Fehlstellen vorab durch Farbmarkierungen hervorheben. Nach kurzer Schulung ist der Kunde imstande, solche Aufgaben selbst durchzuführen. Dies ist eine wesentliche Voraussetzung für den Erfolg des Projekts. Im vorliegenden Fall genügten etwa 50 Bilder von Gutteilen sowie von der gleichen Zahl an Schlechtteilen.

Compar AG - Lötkontrolle Deep Learning Bild 4
Beispiel: Balkendiagramm der Häufigkeiten von IO- und NIO-Beurteilungen. FP= falsch positiv, FN = falsch negativ, TN = total negativ, TP = total positiv. Der Threshold-Wert bestimmt, welche Teile verwendet bzw. aussortiert werden.

Die ViDi-Abläufe
„Die ViDi-Software besteht aus drei Modulen (red, green und blue), von denen im vorliegenden Fall die Module „red“ und „blue“ zum Einsatz kommen“, verrät L. Vassalli. Das als „Locator“ bezeichnete „blue“-Modul kontrolliert die Leiterplatinen auf korrekte Bestückung. Es identifiziert Lötstellen und Bauteilpositionen sowie Aufdrucke. Dabei sind Varianzen vorgebbar. Anschliessend übernimmt dann ViDi „red“ die Klassifikation in IO- bzw. NIO-Teile. Beim Training kann man verschiedene Ansätze wählen, z. B. indem man statt der beiden Kategorien IO/-NIO ausschliesslich IO-Teile vorgibt. In diesem Falle wird die KI alles, was nicht eindeutig als IO erkennbar ist, automatisch als NIO klassifizieren.

Compar AG - Lötkontrolle Deep Learning Bild 5
Bei dieser Darstellung werden alle IO- bzw. alle NIO-Bewertungen bis zum jeweiligen Extremwert aufsummiert und dann auf 1 normiert. Die Überlappung der beiden Bereiche ist ein Hinweis auf unzureichende Trennschärfe bzw. Zusatzbedarf beim Trainieren. Auch erkennt man deutlich den Einfluss der Threshold-Festlegung auf das Ausschussgeschehen.

Die Trennschärfe als Zuverlässigkeitsmerkmal
„Eine wichtige Eigenschaft der ViDi-Analyse ist die numerische Bewertung der Klassifikation des jeweiligen Ergebnisses“, setzt L. Vassalli hinzu. Das System klassifiziert begutachtete Bilder zwar grundsätzlich nach den Kriterien „IO“ bzw. „NIO“, gibt aber hierzu stets einen prozentualen Vertrauenswert aus. Dieser gibt an, zu welchem Prozentsatz die Software Bild sich in ihrem Urteil sicher ist. Die Skala geht dabei von 0 (= 100% IO) bis zu 1 (= 0% IO bzw. 100 % NIO). Die Häufigkeitsverteilung dieser Einstufungen wird statistisch in Form von Diagrammen mit z.B. grüner Farbe für IO- und roter Farbe für NIO-Ergebnisse ausgegeben. Sie haben die Form von zwei Balkendiagrammen in grüner bzw. roter Farbe, die sich teilweise überlappen können. Eine einfachere Darstellung ergibt sich aus der Auftragung der kumulierten und auf Eins normierten Streubereiche. Diese können sich je nach Aufgabe und Bewertungskriterien entweder teilweise überlappen oder zwei deutlich getrennte Gruppen bilden. Wenn das Training optimal gelaufen ist, gibt es zwischen den kumulierten Häufigkeitsbereichen keine Überlappung. Dies belegt dann eine gute Trennschärfe des Verfahrens. Ist dies nicht der Fall, so landet man im Entscheidungsbereich zwischen „falsch-positiven“ und „falsch-negativen“ Einstufungen. In solchen Fällen spielt die optimale Festlegung des sogenannten Treshhold-Wertes eine wichtige Rolle. Platziert man diesen mehr zur sicheren Seite hin, so minimiert man beispielsweise das Ausfallrisiko von sicherheitsrelevanten Komponenten beim Kunden. Mit der umgekehrten Strategie kann man dagegen ggf. das interne Ausschussgeschehen absenken.

Compar AG - Lötkontrolle Deep Learning Bild 6
An dieser von Visionexpert aufbereiteten Übersicht erkennt man eine erfreulich breite Lücke zwischen den vergebenen IO- bzw. NIO-Bewertungen. Die Ergebnisse sind somit hoch vertrauenswürdig.

Zusammenspiel mit Visionexpert
„Besonders interessant wird für die Kunden die Verzahnung der beschriebenen ViDi-Möglichkeiten mit der von uns entwickelten Bildverarbeitungssoftware Visionexpert“, bilanziert L. Vassalli. Das Compar-Programm übernimmt als Hauptkomponente zunächst das externe Hardware-Handling, d.h. die Anbindung der zahlreichen möglichen Kameramodelle sowie sonstiger Peripherie. Weitere Aufgabe ist das Bilddaten-Management sowie die Weitergabe von zu analysierenden Bilddaten an ViDi. Die zurückgelieferten Ergebnisse werden intern verwendet, visualisiert und schliesslich in die Entscheidungsfindung eingebunden. Trotz aller Automatik behält der Mensch durch Vorgabe von Prüfkriterien und Entscheidungsvorgaben wie z.B. dem Treshhold-Level stets die Entscheidungsgewalt.

Compar AG - Lötkontrolle Deep Learning Bild 7
Abläufe beim Prüfen: Die Kamera nebst Beleuchtungseinheiten Visionexpert liefert ein Bild der Platine. Vision Expert übernimmt seinen Teil der Auswertung und veranlasst zugleich eine parallele Analyse durch ViDi. Deren Ergebnisse fließen anschließend in die Visionexpert-Beurteilung ein. Daraus resultieren Steuerbefehle an die Prozess-SPS sowie Meldungen an die übergeordnete IT-Struktur des Unternehmens.

Zur Analyse und Beurteilung eines Prüflings werden neben den Ergebnissen der ViDi-Untersuchung auch die Visionexpert-eigenen Fähigkeiten herangezogen. Diese Software kann im Unterschied zum ViDi-Plug-In beispielsweise Abmessungen bis herab in dem µm-Bereich mit hoher Genauigkeit messen und anhand der Ergebnisse Entscheidungen treffen. Schliesslich übernimmt Visionexpert auch noch die Kommunikation mit der übergeordneten IT des Unternehmens. Für Compar, das seit Jahrzehnten Lösungen zur visuellen Qualitätskontrolle entwickelt, ist die Einbindung des neuen, KI-basierten Tools ein wichtiger Schritt zur weiteren Verbesserung des Angebots, so L. Vassalli.

Compar AG - Lötkontrolle Deep Learning
Voll integrierte 100%-ige optische Qualitätskontrolle von Lötstellen mittels Deep Learning Verfahren auf Produktionsstrasse von Rauchmeldern. (Foto: Siemens Smart Infrastructure)


Firmenprofil
I
ndustrielle Bildverarbeitungssysteme von Compar AG (gegründet 1986) sind überall dort zu finden, wo Qualitätskontrollen gefordert, Null-Fehler-Strategien verfolgt, Ressourceneffizienz und eine hohe Produktivität verlangt werden. Hauptaufgaben sind Inspektionen, Identifikationen und Robot Guidance. In allen Branchen, ganz besonders aber in der Automobil-, Uhren-, Verpackungs-, Druck-, Elektronik-, Medizinal- und Pharmaindustrie, schätzen Kunden unsere innovativen Komplettlösungen, die auf unserem modularen Baukastenprinzip basieren.

Mit dem Anspruch für Sie ein kompetentes Systemhaus für industrielle Bildverarbeitung und Robotik zu sein, bieten wir Lösungen mit intelligenten Kameras, PC-basierten Visionsystemen, präzisen Robotern, bis hin zu ganzheitlichen Prüfanlagen mit hochflexiblem Handling. Dank interdisziplinärem und vernetztem Ingenieurwissen über Automation, Bildverarbeitung und Robotik entstehen leistungsfähige Systeme, die begeistern und überzeugen. Mit Weitsicht und Nachhaltigkeit ist es unser Ziel Sie stets weiter zu bringen.

Leitbild
Wir bleiben für Sie dran und lösen Ihre Aufgaben in enger Zusammenarbeit mit Ihnen, ganz nach dem Motto: Vertrauen ist gut, Sehen ist besser.

Know-how
Die Fachrichtungen Elektronik, Informatik, Optik und Maschinenbau müssen beim Einsatz von Visionsystemen zusammenkommen und sich zu einer interdisziplinären und ganzheitlichen Sicht verbinden. Die eingesetzte Bildverarbeitungssoftware zeichnet sich durch Robustheit und Leistungsfähigkeit aus. Mit unserem Qualitätsbewusstsein und dem wirtschaftlichen Denken sind wir für Sie der richtige Partner.

Kernkompetenzen
Der industrielle Einsatz von Bildverarbeitung und Robotik sind unsere Kernkompetenzen. Wir analysieren Ihre Aufgaben und entwickeln für Sie geeignete Lösungen aus Hardware und Software und integrieren diese in Ihre Anlagen und Maschinen.

 

Compar AG - LogoCompar AG
Rietbrunnen 44
CH-8808 Pfäffikon SZ

Tel. +41 55 416 10 60

info@compar.ch
www.compar.ch

Niederlassung Westschweiz / Office Romandie
Avenue des Sciences 13
1400 Yverdon-les-Bains

Tel +41 24 426 06 90


Quicklinks
Unternehmen
Branchen
Lösungen
Produkte
News
Applikationen
Dienstleistungen
Download
Videos
Kontakt

Produkte

Anwesenheitskontrolle
Anwesenheitsprüfung
autonome Zelle
Bildverarbeitung
Bildverarbeitung zur Maschinensteuerung
Bildverarbeitung, digitale
Bildverarbeitung, elektronische (EBV)
Bildverarbeitungskomponenten
Bildverarbeitungssysteme, digitale
Codelesung
Druckbildkontrolle
Flexibles Handling
Handling
Industriekameras
Industrielle Bildverarbeitung zur Qualitätskontrolle
Industrieroboter
Industrieroboteranwendungen
Inspektion
Intelligente Kamera
Kamerasysteme
Komponenten
Linearmodule
Lötkontrolle
Machine vision
Masskontrolle
Messsensoren
Optische Inspektion
Optische Prüfung
Optische Systeme
Palettieren
Palettiersystem
Palettierzelle
Printkontrolle
Prüfsysteme
Prüfung Kontrolle
Prüfzelle
Qualitätskontrolle
Qualitätssicherung
Robotvision
Smartsysteme
Systemhausleistungen
Visionexpert
Visionsysteme

 

 

 

Folgen Sie Industrie-Schweiz auf Twitter

Folgen Sie Industrie-Schweiz auf Facebook

Treten Sie der Gruppe Industrie Schweiz auf XING bei

Folgen Sie Industrie-Schweiz auf Linkedin

Das Industrie Portal für die Schweizer Maschinen-, Elektro- und Metall Industrie

MTS Messtechnik Schaffhausen GmbH

           

 

 

 

 


Industrie Waagen
Vom Feuchtebestimmer bis zur Paketwaage. In der Industrie werden alle Arten von Waagen eingesetzt.

PCE - KranwaageMehr Infos


PCE-CS Serie
Industriewaage
  

PCE Deutschland GmbH

 

igus® Schweiz GmbH

 

Industrie-Schweiz - das Internetportal für die
Schweizer Maschinen-, Elektro- und Metall-Industrie


 


 


 

 


 

Startseite Startseite
 Suchen    

Partner-Websites:     Kunststoff-Schweiz           Kunststoff-Deutschland           Schweizer-MedTech           Schweizer-Verpackung      

Suchen

×

☰Menü: