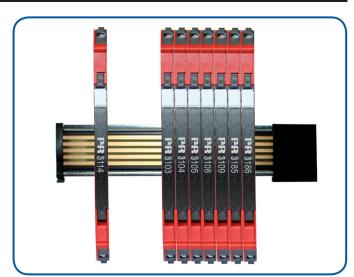
UNIVERSAL MESSUMFORMER

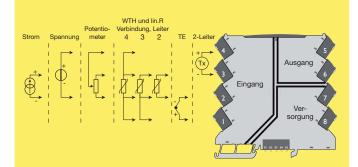


- Eingang für WTH, TE, Ohm, Potmeter, mA und V
- Slimline Gehäuse in 6 mm
- 2-Leiter Versorgung > 15 V
- Ausgang für Strom und Spannung
- Kann separat über Klemmenanschluss oder über die Power Rail 9400 versorgt werden

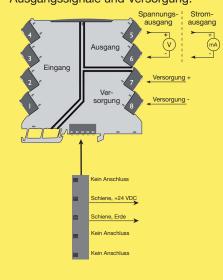
Erweiterte Merkmale

Wenn das 3114 in Kombination mit der Display- / Programmierfront und der Schnittstelle ConfigMate 4590 benutzt wird, können alle operativen Parameter geändert werden, passend für jede Anwendung. Das 3114 ist mit elektronischen Hardware Schaltern entwickelt worden, von daher ist es nicht nötig, das Gerät zu öffnen um DIP Schalter einzustellen.

Applikationen


- Linearisierte, elektronische Temperaturmessung mit Widerstandssensor oder Thermoelementsensor.
- Umwandlung von linearer Widerstandsänderung in ein analoges Standardstrom / -Spannungssignal, z.B. von Magnetventilen und Ventilklappen oder lineare Antriebe mit angeschlossenem Potentiometer.
- Spannungsversorgung und Signaltrenner für 2-Draht-Messumformer.
- Prozesssteuerung mit Standard-Analogausgang.
- Galvanische Trennung von Analogsignalen und Messung von Signalen, die nicht massegebunden sind.

Technische Merkmale


- Eine grüne / rote Leuchtdiode in der Front des Gerätes zeigt den normalen Betrieb und Fehlfunktionen an.
- 2,5 kVAC galvanische Trennung der 3 Ports.

Anschlüsse

Eingangssignale:

Ausgangssignale und Versorgung:

Telefax +41 52-672 50 01 www.mts.ch, e-mail: info@mts.ch

Bestellangaben:

3114 = Universal Messumformer 4501 = Display- / Programmierfront

4590 = ConfigMate

3405 = Einspeisebaustein (für Power Rail)

9400 = Power Rail 9404 = Endhalter

PR 4590 ConfigMate und PR 4501 Display-/ Programmierfront

Anwendungen

- Das 4590 ist ein tragbares Gerät, das als Adapter zwischen dem Programmierdisplay 4501 und der 3114 fungiert. Dies ermöglicht die direkte Konfiguration und Überwachung von Prozessparametern der installierten Geräte.
- Kann von einem 3114 auf das nächste gesteckt werden um die Daten des ersten Messumformers auf den nächsten zu übertragen.

Temperatur-

Technische Merkmale

 Der Zugriff auf die Programmierung kann mit der Eingabe eines Passwortes blockiert werden. Das Passwort wird im Messumformer gespeichert, um den höchsten Grad an Schutz gegen nicht autorisierte Änderungen der Konfiguration sicherzustellen.

Montage / Installation

 Stecke das 4501 auf das 4590 und verbinde es dann mit dem 3114.

Elektrische Daten:

Spezifikationsbereich:

-25°C bis +70°C

Eingangs-

Allgemeine Daten:

Versorgungsspannung, DC Eigenverbrauch	
Leistungsaufnahme (max.)	1,2 W `
Sicherung	400 mA SB / 250 VAC
Isolationsspannung, Test	2,5 kVAC
Isolationsspannung	
Signal- / Rauschverhältnis	
Ansprechzeit (090%, 10010%):	
Temperatureingang	≤1 s
mA- / V-Eingang	
Kalibrierungstemperatur	2028°C
Genauigkeit: Höhere Wert der allgem	
Allgemeine Werte	

Absolute

art	Genauigkeit	koeffizient
Alle	\leq ±0,1% d. Messsp.	≤ ±0,01% d. Messsp./°C
	Grundwerte	
Eingangs art	Grund- genauigkeit	Temperatur- koeffizient
mA	≤ ±16 µA	≤ ±1,6 µA / °C
01 V & 0,21 V	′ ≤ ±0,8 mV	≤ ±0,08 mV / °C
05 V, 15 V, 010 V & 210 V	/	≤ ±0,8 mV / °C
Pt100, Pt200, Pt 1000	≤ ±0,2°C	≤ ±0,02°C / °C
Pt500, Ni100, Ni120, Ni 1000	≤ ±0,3°C	≤ ±0,03°C / °C
Pt50, Pt400, Ni50) ≤ ±0,4°C	≤ ±0,04°C / °C
Pt250, Pt300	≤ ±0,6°C	≤ ±0,06°C / °C
Pt20	≤ ±0,8°C	≤ ±0,08°C / °C
Pt10	≤ ±1,4°C	≤ ±0,14°C / °C
TE-Typ: E, J, K, L, N, T, U	≤±1°C	≤ ±0,1°C / °C
TE-Typ: R, S, W3 W5, LR	, ≤ ±2°C	≤ ±0,2°C / °C
TE-Typ: B 160400°C	≤ ±4,5°C	≤ ±0,45°C / °C
TE-Typ: B 4001820°C	≤ ±2°C	≤ ±0,2°C / °C

EMV Störspannungsinfluss Erweitere EMV Störfestigkeit: NAMUR NE 21, Kriterium A, Burst	
Hilfsspannungen: Leitungsquerschnitt (max.)	Litzendraht
Klemmschraubenanzugsmoment Relative Luftfeuchtigkeit Abmessungen (H x B x T) DIN-Schiene Typ Schutzart Gewicht	< 95% RH (nicht kond.) 113 x 6,1 x 115 mm EN 60715 IP20

WTH-, linearer Widerstands- und Potentiometereingang:

Eingangs-	Min.	Max.	Norm
art	Wert	Wert	
Pt100	-200°C	+850°C	IEC60751
Ni100	-60°C	+250°C	DIN 43760
Lin. R	0 Ω	10000 Ω	-
Potentiometer	10 Ω	100 kΩ	-

Kabelwiderstand p. Leiter (max.), WTH	50 Ω
Fühlerstrom, WTH	Nom. 0,2 mA
Wirkung des Leitungswiderstandes	
(3- / 4-Leiter), WTH	$< 0.002 \Omega / \Omega$
Fühlerfehlererkennung, WTH	Ja
Kurzschlusserkennung, WTH	< 15 Ω

TE-Eingang:

Thermoelement Typ	B, E, J, K, L, N, R, S, T, U, W3, W5, LR
Varalaiahaatallankampanaatian (CIC):	

Stromeingang:

Messbereich	020 mA
Programmierbare Messbereiche	020 und 420 mA
Eingangswiderstand	Nom. 20 Ω + PTC 50 Ω

Spannungseingang:

Messbereich	012 VDC
Programmierbare Messbereiche	0/0,21; 0/15; 0/210 V
Eingangswiderstand	Nom. 10 M Ω

Stromausgang:

Signalbereich (Spanne)	020 mA
Programmierbare Signalbereiche	0/420 og 204/0 mA
Belastung (max.)	20 mA / 600 Ω / 15 VDC
Belastungsstabilität	≤0,01% d. Messsp./100 Ω
Fühlerfehlererkennung	0 / 3,5 / 23 mA / keine
NAMUR NE 43 Up- / Downscale	23 mA / 3,5 mA
Strombegrenzung	

Spannungsausgang:

Signalbereich	010 VDC
Programmierbare Signalbereiche	0/0,21; 0/15; 0/210;
	10,2/0; 51/0; 102/0 V
Belastung (min.)	>10 kΩ

Zulassungen:

Zulassungen:	
Det Norske Veritas, Ships & Offshore.	Stand. f. Cert No. 2.4
Germanischer Lloyd	V1-7-2
ATEX 94/9/EG	EN 60079-015
IECEx	IEC 60079-0, -15
c FM us	FM 3600, 3611, 3810
	CSA E60079-0, -15
	CSA 22.2 -213
EMV 2004/108/EG	EN 61326-1
LVD 2006/95/EG	EN 61010-1
UL, Standard for Safety	UL 61010-1
Safe Isolation	

d. Messsp. = des momentan gewählten Messbereichs