UNIVERSAL-MESSUMFORMER

- Eingang für WTH, TE, Ohm, Potentiometer, mA und V
- 2-Draht-Versorgung > 16 V
- FM-Zulassung für Installation in Div. 2
- Ausgänge für Strom, Spannung und 2 Relais
- Universelle Versorgung mit AC oder DC

Erweiterte Merkmale:

 Programmierbar mittels abnehmbare Frontdisplay (4501), Prozesskalibrierung, Signal- und Relaissimulierung, Passwortschutz, Fehlerdiagnose und Wahl von Hilfetext auf mehreren Sprachen.

Verwendung:

- Elektronische, lineare Temperaturmessung mit Widerstandssensor oder Thermoelementsensor.
- Umwandlung von linearer Widerstandsänderung in ein analoges Standardstrom /
 -Spannungssignal, z. B. von Magnetventilen, Schmetterlingsventilen oder lineare Bewegungen mit angeschlossene Potentiometer.
- Spannungsversorgung und Signaltrenner für 2-Draht-Messumformer.
- Prozesssteuerung mit 2 Paaren von potentialfreien Relaiskontakten und Analogausgang.
- Galvanische Trennung von Analogsignalen und Messung von Signalen, die nicht massegebunden sind.
- Das 4116 ist gemäß den strengsten Sicherheitsrichtlinien entwickelt und somit in Installationen mit SIL 2 Applikationen einsetzbar.

Technische Merkmale:

- Wenn das 4116 in Kombination mit der Programmierfront eingesetzt wird, können alle operativen Parameter der entsprechenden Applikation angepasst werden.
- Eine grüne / rote Leuchtdiode in der Front des Gerätes zeigt den normalen Betrieb und Fehlfunktionen an. Die gelben Leuchtdioden leuchten bei aktiviertem Ausgangsrelais.
- Ständige Prüfung wichtiger Speicherdaten aus Sicherheitsgründen.
- 2,3 kVAC galvanische Trennung der 4 Ports.

Bestellangaben:

4116 = Universal-Messumformer

4501 = Display / Programmierfront

5910 = CJC-Anschlussklemme

PR 4501 Display / Programmierfront

Anwendungen:

- · Kommunikationsschnittstelle zur Änderung der operativen Parameter im 4116
- Kann von einem 4116 auf das nächste gesteckt werden um die Daten des ersten Messumformers auf den nächsten zu
- Stationäres Display zur Visualisierung der Prozessdaten und des Status.

Technische Merkmale:

• LCD Display mit 4 Zeilen; Zeile 1 (5,57

mm hoch) zeigt das Eingangssignal, Zeile 2 (3,33 mm hoch) die Einheiten, Zeile 3 (3,33 mm hoch) den Analogausgang oder den Geräte-TAG und Zeile 4 den Kommunikations- und Relaisstatus an.

• Der Zugriff auf die Programmierung kann mit der Eingabe eines Passwortes blockiert werden. Das Passwort wird im Messumformer gespeichert, um den höchsten Grad an Schutz gegen nicht autorisierte Änderungen der Konfiguration sicherzustellen.

Montage / Installation:

• Durch einfaches Aufstecken des 4501 auf die Front des 4116.

Elektrische Daten:

Umgebungstemperatur:

-20°C bis +60°C

Allgemeine Daten:

Universelle Versorgungsspannung.... 21,6...253 VAC, 50...60 Hz oder 19,6...300 VDC Stromverbrauch max...... \leq 2,5 W Signal- / Rauschverhältnis...... Min. 60 dB (0...100 kHz) Ansprechzeit (0...90%, 100...10%): Temperatureingang ≤ 1 s Genauigkeit: Höhere Wert der allgem. Werte oder Grundwerte:

Allgemeine Werte

Eingangs- art	Absolute Genauigkeit	Temperatur- koeffizient			
Alle	\leq ±0,1% d. Messsp.	≤ :	±0,01% d. Messsp./°C		
Grundwerte					
Eingangs- art	Grund- genauigkeit		Temperatur- koeffizient		
mA	≤ ±4 µA		≤ ±0,4 µA / °C		
Volt	≤ ±20 μV		≤ ±2 μV / °C		
Pt100	≤ ±0,2°C		≤ ±0,01°C / °C		
Lin. R	≤ ±0,1 Ω		≤ ±0,01 Ω / °C		
Potentiometer	≤ ±0,1 Ω		≤ ±0,01 Ω / °C		
TE-Typ: E, J, K, L, N, T, U	≤ ±1°C		≤ ±0,05°C / °C		
TE-Typ: R, S, W3 W5, LR	, ≤ ±2°C		≤ ±0,2°C / °C		
TE-Typ: B 160400°C	≤ ±4,5°C		≤ ±0,45°C / °C		
TE-Typ: B 4001820°C	≤ ±2°C		≤ ±0,2°C / °C		

EMV Störspannungsinfluss	<±0,5% d. Messsp.
Erweitere EMV Störfestigkeit:	
NAMUR NE 21, Kriterium A, Burst	< ±1% d. Messsp.

Hilfsspannungen:

Schutzart IP20

WTH-, linearer Widerstands- und Potentiometereingang:

Eingangs-	Min.	Max.	Norm
art	Wert	Wert	
Pt10Pt1000	-200°C	+850°C	IEC 60751
Ni50Ni1000	-60°C	+250°C	DIN 43760
Cu10Cu100	-200°C	+260°C	α = 0,00427
Lin. R	0 Ω	10000 Ω	-
Potentiometer	10 Ω	100 kΩ	-

Wirkung des Leitungswiderstandes	
(3- / 4-Leiter), WTH	$< 0.002 \Omega / \Omega$
Fühlerfehlererkennung, WTH	
Kurzschlusserkennung, WTH	< 15 Ω
TE-Eingang:	
Thermoelement Typ	B, E, J, K, L, N, R, S,
	T, U, W3, W5, LR
Vergleichsstellenkompensation (CJC):	
über externen Sensor in der Anschlussklemme 5910	2028°C ≤ ± 1°C
Anschlusskiemme 5910	-2020°C /
	2870°C ≤±2°C
über internen CJC-Sensor	+(2.0°C + 0.4°C * \text{\text{\text{t}}}
Δt = interne Temperatur-Umgebungstemp	peratur
Fühlerfehlererkennung, alle TE-Typen	Ja
Fühlerfehlerstrom:	
Bei Erkennung	Nom. 2 µA
Sonst	0 μΑ
Stromeingang:	
Messbereich	020 mA
Programmierbare Messbereiche	
Eingangswiderstand	Nom. 20 Ω + PTC 50 Ω
Spannungseingang:	
Messbereich	012 VDC
Programmierbare Messbereiche	0/0,21; 0/15; 0/210 V Nom. 10 MΩ
Eingangswiderstand	NOTT. TO IVIS2
Stromausgang:	0 20 m 4
Signalbereich (Spanne)	020 mA 0/420 und 204/0 mA
Programmierbare Signalbereiche Belastung (max.)	20 mA / 800 Ω / 16 VDC
Belastungsstabilität	≤0,01% d. Messsp./100 Ω
Fühlerfehlererkennung	0 / 3,5 / 23 mA / keine
NAMUR NE 43 Up- / Downscale	23 mA / 3,5 mA
Strombegrenzung	≤ 28 mA
Spannungsausgang:	
Signalbereich	010 VDC
Programmierbare Signalbereiche	0/0,21; 0/15; 0/210;
	10,2/0; 51/0; 102/0 V
Belastung (min.)	500 kΩ
Relaisausgänge:	
Relaisfunktionen	Sollwert, Fenster, Fühler-
	fehler, Verriegelung,
Lhyotoxooo	Power und Off
HystereseOn- / Off-Verzögerung	0100% 03600 s
Maximalspannung	250 VRMS
Maximalstrom	2 A / AC oder 1 A / DC
Max. Wechselstromleistung	500 VA
Fühlerfehlerbetätigung	Schliessen/Öffnen/Halten
Ex- / I.SZulassung:	
FM, Anwendungsbereich in	Cl. I, Div. 2, Gr. A, B, C, D
,	Class I, Div. 2, Group IIC
	Zone 2
Max. Umgebungstemperatur für T5	60°C
Marine-Zulassung:	
Det Norske Veritas, Ships & Offshore.	Stand. f. Certific. No. 2.4
GOST R Zulassung:	
VNIIM, Cert. No.	www.prelectronics.de
Eingehaltene Richtlinien:	Norm:
EMV 2004/108/EG	
LVD 2006/95/EG	
FM	3600, 3611, 3810 und
	ISA 82 02 01

ISA 82.02.01

UL, Standard for Safety...... UL 508

d. Messsp. = des momentan gewählten Messbereichs